Calculus Curriculum Map Created March 2023

Month	Unit/Topic of Study from CPM	Standards	Key Vocabulary	Test Taking and Reading and Engagement Strategies	Math Skills with Depth of Knowledge	Writing in the content area	Assessment s
Sept	Chapter 1: A Beginning Look at Calculus 15 Days	EK 3.2C1*, EK 3.4C1*, EK 2.1A1*, EK 2.3C1* EK 1.2A1*, EK 1.1D1*, EK 2.1C4*, EK 2.1B1*, EK 2.3D1*, EK 3.4D2*, EK 3.4B1, EK 3.3A2*, EK 3.2B1*	Prism Cylinder Sphere Pyramid Cone Graphing Form Point-Slope Form Even Function Odd Function Piecewise Function Continuous Not Continuous Interval Notation Set Notation Step Function End Behavior Slant Asymptote Horizontal Asymptote Horizontal Asymptote Approach Statement Indeterminate Form Inverse Functions	The Slope Walk Design a Flag Kagan: Numbered Heads Together	 In this chapter students will: Explore the Fundamental Theorem of Calculus informally through interpreting the area under a velocity graph as displacement and the slope of a position graph as velocity. Apply algebra to describe the graphs of various functions. These descriptions will include domain, range, end behavior, discontinuities, and horizontal and vertical asymptotes. Piecewise-defined functions, inverse functions, and even and odd functions are also investigated. Informally describe the rates of change of functions. These methods include analyzing finite differences, writing slope statements, and kinesthetically <i>walking</i> a graph (comparing 	Content Writing Map https://docs. google.com/ document/d/ 1e8TtlvyzuF 5GhHaazW VAqFS4Dz CNc7eMcX k_ID_JH1s/ edit	Individual Quizzes: 1.1 1.2 1.3 1.4 1.5 Team Quiz Chapter 1 Assessment

			Slope Statement Average Velocity Initial Position Displacement Total Distance Velocity Speed Acceleration		• • • • •	steepness to velocity). Apply geometry to approximate the area under a curve using dissection, determine if an approximation is greater or less than the actual area, and seek ways to improve these approximations. Rotate two-dimensional "flags" to generate three-dimensional solids such as cones, spheres, and cylinders, and compute the corresponding volumes. Identify a hierarchal relationship among position, velocity, and acceleration. Then draw distinctions between velocity and speed; and displacement, total distance, and actual position. Compute the <i>average</i> rate of change given a velocity function or a distance function, and interpret its meaning physically. Given a position function, determine average velocity on a closed interval. Given a velocity function, determine average velocity on a closed interval.		
--	--	--	--	--	-----------	--	--	--

Oct	Chapter 2: Rates, Sums, Limits, Continuity 11 Days Chapter 3: Slope and Curve Analysis 14 Days	Chapter 2 EK 3.2B2, EK 3.2A1, LO 1.1A1, EK 1.1A2, EK 1.1A3, EK 1.1A3, EK 1.1A3, EK 1.2A1, EK 1.2A1, EK 1.2A3, EK 1.2B1, EK 1.1C1, EK 1.1C2, EK 1.1D1, EK 1.1C2, EK 2.1A1, EK 2.1B1, EK 2.3B2, EK 3.2A3 Chapter 3 	Chapter 2: Trapezoid Rule Summation Notation Index Argument Riemann Sums Limits Continuous Over an Interval Intermediate Value Theorem Locally Linear Cusp Linearization Chapter 3: Slope Function Vertical Stretch Vertical Stretch Vertical Shift Horizontal Shift Power Rule Average Rate of Change Instantaneous Rate of Change Instantaneous Rate of Change Instantaneous Rate of Change Instantaneous Rate of Change Derivative Increasing Decreasing Extrema Maximum Minimum Monotonic Concave Up Concave Down Point of	Ramp Lab Curve Constructor Lab Kagan: Showdown	 In Chapter 2 students will: Approximate the area under a curve using trapezoids and left, right, and mid segment rectangles, with or without uniform partitions. Apply summation notation to express a Riemann sum where all rectangles have uniform partitions. Apply limits, including one-sided limits and limits to infinity, to describe the asymptotic or unbounded behavior of a function. Apply limits to compare the relative magnitudes of functions. Discuss the local linearity of well-behaved functions. Examine various ways that a limit might <i>not</i> exist. Prove the existence of indeterminate limits: Apply a three-part definition of continuity to determine if a function is continuous at a point. Examine how continuity provides the basis for the Intermediate Value Theorem. Apply the difference quotient to approximate the velocity of an object 	Claim Identificatio n	Chapter 2: Individual Quizzes - 2.1 2.2 2.3 2.4 Team Quiz Chapter 2 Assessment Chapter 3 Individual Assessment s: 3.1 3.2 3.3 3.4 Chapter 3 Team Quiz Chapter 3 Assessment
		EK 3.1A1,	Point of				

	EK 3.1A2,		at an instant.	
	EK 2.3D1	Differentiable Twice	In Chapter 3, Students will:	
		Symmetric Difference	In this chapter students will:	
		Quotient	 Examine different interpretations of the derivative: slope of a tangent line, instantaneous rate of change, and the limit of a difference quotient. Define four different forms of the derivative at a point Extend definitions of the derivative at a point to the derivative of a function, f'(s) Discover the Power Rule. Apply the definition of derivative as a limit to evaluate derivatives of sine and cosine Explore how first derivatives can be used to 	
			indicate where a curve is increasing or decreasing and concave up or concave down, and how second derivatives can be used to indicate where a curve is concave up or concave down.	
			• Identify the relationship	

					 between derivatives and other rates of change such as velocity and acceleration. Investigate and categorize functions that are not differentiable everywhere. Explore ways to use differentiation rules to antidifferentiate. 		
Nov	Chapter 4: The Fundamental Theorem of Calculus 16 Days	EK 3.2A3, EK 3.2A2, EK 3.2C2, EK 3.2C1, EK 3.3A1, EK 3.3B3, EK 3.3B3, EK 3.3B1, EK 3.3B2, EK 3.3A2, EK 3.3A2, EK 3.4A1, EK 3.4A2, EK 3.4A2, EK 3.4A2, EK 3.4A2, EK 3.4A2, EK 3.4A2, EK 3.4A1, EK 2.1A1, EK 2.3C3, EK 2.3C1, EK 1.2A1, EK 1.2A2, EK 3.3B2, EK 3.3B2, EK 3.4C1, EK 3.4D1, EK 2.3B1	Definite Integral Lower Bound Upper Bound Integrand Antiderivative Indefinite Integral Area Between and Under Curves Newton's Method	Fast Times Lab Kagan: Numbered Heads Together	 In this chapter students will: Explore the definition of a definite integral as the limit of a Riemann sum. Apply algebraic properties to definite integrals, and simplify expressions. Interpret and use definite integrals as a way to calculate area under a curve accurately. Interpret and use definite integrals as a way to calculate accurulation or net change. Compare and contrast definite integrals that yield finite values, definite integrals that yield functions and indefinite integrals 	Command of Evidence	Chapter 4 Individual Quizzes: 4.1 4.2 4.3 4.4 4.5 Chapter 4 Team Quiz Chapter 4 Assessment

					•	Understand the constant of integration. Discover and apply both parts of the Fundamental Theorem of Calculus. Solve application problems involving definite integrals and motion: displacement, velocity and acceleration. Apply definite integrals to calculate the area of a region contained between curves.		
Dec	Chapter 5: Derivative Tools and Applications 15 Days	EK 2.2A1, EK 2.3A1, EK 2.3C1, EK 2.3C3, EK 2.2A1, EK 2.2A2, EK 2.2B1, EK 2.2B1, EK 2.1C3, EK 2.1C1, EK 2.1C4, EK 2.1C2, EK 3.3A2, EK 1.1C3, EK 2.3B2	Critical Point First Derivative Test Second Derivative Test Local Extrema Global Maximum Global Minimum Maxima Minima Extreme Value Theorem Product Rule Chain Rule Quotient Rule Indeterminate Forms L'Hospital's Rule	Optimization Kagan: Quiz-Quiz-Tr ade Kagan: Rally Table	•	In this chapter students will: Apply the First and Second Derivative Tests to locate local extrema. Apply the First and Second Derivative Tests, combined with testing endpoints, to locate global extrema. Make sense of the Extreme Value Theorem. Develop derivative rules: Product Rule, Quotient Rule, and Chain Rule. Complete a formal proof of the Product Rule. Apply the Quotient Rule to differentiate sec(x),	Inference	Chapter 5 Individual Quizzes: 5.1 5.2 5.3 5.4 5.5 Chapter 5 Team Quiz Chapter 5 Assessment

					•	csc(x), tan(x), and cot(x). Recognize and solve optimization problems. Apply the Chain Rule to the Fundamental Theorem of Calculus, when the definite integral has functions as bounds. Apply l'Hôpital's Rule to limits of indeterminate forms.		
Jan	Chapter 6: More Tools and Theorems 13 Days	EK 2.1C1, EK 2.1C2, EK 2.1C3, K 2.1C4, EK 3.1A2, EK 2.1C5, EK 2.1C6, EK 2.1C2, EK 2.1C1, EK 3.4B1, EK 3.4B1, EK 3.2D1, EK 3.2D2	e Natural logarithm Exponential functions Mean Value Theorem Mean Value Rolle's Theorem Converge Diverge Improper Integrals	The Great Race Kagan: Numbered Heads Together	•	In this chapter students will: Compare the graphs of exponential and logarithmic functions. Apply implicit differentiate functions and relations. Apply implicit differentiate logarithmic functions and inverse trigonometric functions. Apply the derivative of a function, at various values of (a,b) to differentiate its inverse, at its corresponding values of (b,a). Calculate and compare the average (mean) value and average rate of	Inference	Chapter 6 Individual Assessment s: 6.1 6.2 6.3 6.4 6.5 Chapter 6 Team Quiz Chapter 6 Assessment

					 change of a function on a closed interval. Interpret and apply the Mean Value Theorem, and determine the conditions for which the Mean Value Theorem does not apply. Interpret and apply Rolle's Theorem, and determine the conditions for which Rolle's Theorem does not apply. Apply limits to evaluate improper integrals. Examine the convergence or divergence of improper integrals 		
Feb	Chapter 7: Related Rates and Integration Tools 16 Days	EK 2.3D1, EK 2.3A1, EK 2.3C2, EK 3.3B5, EK 3.5A1, EK 3.5A2, K 3.5A3, EK 2.3E1, EK 2.3E2, EK 3.5B1, EK 2.3F1, EK 2.3F2, EK 3.3B5	Related Rates U-substitution Differential Equation Differentials Separation of Variables Slope Fields Euler's Method Integration by Parts Partial Fractions	Cooling Lab Kagan: Numbered Heads Together Kagan: Showdown	 In this chapter students will: Describe the rates that dimensions are changing for a given geometric figure whose dimensions are either increasing or decreasing in a non-proportional way. Apply implicit differentiation to set up and solve application problems involving related rates. Apply substitution to 	Compare/ Contrast	Chapter 7 Individual Quizzes: 7.1 7.2 7.3 7.4 Chapter 7 Team Quiz Chapter 7 Assessment

					 evaluate definite and indefinite integrals, and identify integrands in which substitution can and cannot be used. Learn implicit integration to solve separable differential equations. Interpret the statement, "the rate of change of a quantity is proportional to the size of the quantity" as a differential equation whose solution represents exponential growth or decay. Apply slope fields to sketch general and particular solutions to differential equations 		
March	Chapter 8: Volume 12 Days	EK 3.4D2, EK 3.4D3	Cylindrical Disk Washer Prism Cross-Section Arc Length	Lime Lab, Shell Lab Kagan: Rally Table Kagan: Numbered Heads Together Kagan: Showdown	 In this chapter students will: Develop a method to set up and evaluate definite integrals that represent the volumes of three-dimensional solids that are generated by rotating two-dimensional regions about horizontal or vertical axes. Distinguish between disk method and the washer method to calculate volume by rotation, and 	Review all 4 1 of each	Chapter 8 Individual Quizzes: 8.1 8.2 8.3 8.4 Chapter 8 Team Quiz Chapter 8 Assessment

					 choose the appropriate strategy in context. Develop a method to set up and evaluate definite integrals that represent the volumes of three-dimensional solids that are generated by accumulating rectangular layers about vertical or horizontal axes. Develop a method to set up and evaluate definite integrals that represent the volumes of three-dimensional solids that are generated by accumulating two-dimensional solids that are generated by accumulating two-dimensional cross-sections with a given geometric shape across a region on an xy-plane. Given a description of a three-dimensional solid, choose an efficient method to calculate the volume, and justify the choice: the disk method, the washer method. Develop a method to set up and evaluate definite integrals that represent the volume, and justify the choice: the disk method, the ushel method or the cross-section method. Develop a method to set up and evaluate definite integrals that represent the lengths of curves on an xy-plane. 	
--	--	--	--	--	---	--

April	AP Test Review			
Мау	AP Test Review			
June				